If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 14y2 + -8y + 3 = 0 Reorder the terms: 3 + -8y + 14y2 = 0 Solving 3 + -8y + 14y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 14 the coefficient of the squared term: Divide each side by '14'. 0.2142857143 + -0.5714285714y + y2 = 0 Move the constant term to the right: Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.5714285714y + -0.2142857143 + y2 = 0 + -0.2142857143 Reorder the terms: 0.2142857143 + -0.2142857143 + -0.5714285714y + y2 = 0 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + -0.5714285714y + y2 = 0 + -0.2142857143 -0.5714285714y + y2 = 0 + -0.2142857143 Combine like terms: 0 + -0.2142857143 = -0.2142857143 -0.5714285714y + y2 = -0.2142857143 The y term is -0.5714285714y. Take half its coefficient (-0.2857142857). Square it (0.08163265305) and add it to both sides. Add '0.08163265305' to each side of the equation. -0.5714285714y + 0.08163265305 + y2 = -0.2142857143 + 0.08163265305 Reorder the terms: 0.08163265305 + -0.5714285714y + y2 = -0.2142857143 + 0.08163265305 Combine like terms: -0.2142857143 + 0.08163265305 = -0.13265306125 0.08163265305 + -0.5714285714y + y2 = -0.13265306125 Factor a perfect square on the left side: (y + -0.2857142857)(y + -0.2857142857) = -0.13265306125 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 1.075=-125+12x | | 10+35=-5(6x-9) | | 100=-125+12x | | -6(y-1)=-5y-3 | | x=-125+12y | | 8(9x-7)=29 | | 3x^4-x^3-9x^2-3x+2=0 | | 8k= | | W^2=-121 | | 7y-15=14y+15 | | 2n=-144 | | -7x-2=3x^2 | | 5x+2x=40 | | x=0.5dy+0.5y | | 75x^3y-48xy^3=0 | | -2(3r+6)-3(r-5)= | | 2(x-3)+5=3(x+1)+2 | | 2.25t+5=13.5+4 | | 2.1x^2=840 | | 5=-3(2x+1)+7x | | 2(5x-1)=12x-6 | | 3(4n-5)= | | 1=0.4x-0.7x-5 | | 1100t=-35 | | 10-4x-7-11x=6 | | 30=2(4w-5)+2w | | 12x-15x^3= | | -(y+12)= | | 2q+379=781 | | 67.04+41.96-x-46=31 | | 3b=1 | | 5h+5u= |